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The results presented indicate that under stationary conditions the second-order moment (fi2) 
can vary even for constant f. over an extremely wide range, depending on the relations between the 
parameters 01, p2, E, 02, x, L. 
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The redistribution of contact pressure due to the influence of the thermal energy generated by the friction 

between two sliding elastic isotropic bodies is investigated. The plastic strength of the friction pair can be 

represented as the sum of the force and temperature components of the stress tensor. A method for 

controlling plastic deformations connected with wear is proposed. 

1. WE CONSIDER the problem of contact between two elastic heterogeneous bodies, one of which is a 
half-space, while the other one is bounded by an axially-symmetric surface of circular shape. The 
bodies are in contact under the action of a compressive force P and a shear force fP, f being the 
coefficient of friction. The surface of the half-space is sliding at a constant speed V on the stationary 
axially symmetric surface (an irregularity) in the direction of the x axis. As a result of friction, heat is 
generated within the area of contact, which gives rise to the heat flux 

0 09 = VP (r), r < a (1.1) 

into the stationary body. Here y is distribution coefficient of the heat flux, p(r) is the contact 
pressure in the corresponding isothermal contact problem [l] 

t Prikl. Mat. Mekh. Vol. 56, No. 1, pp. 111-117, 1992. 



96 A. A. YEWSHENKO and 0. M. UKHANSKAYA 

z = g(r) is the equation of the surface of the irregularity, A is the vertical displacement of the centre 
of mass of the irregularity, Ei and vi are Young’s moduli and Poisson’s ratio of the material of the 
stationary body (i = l), and the half-space (i = 2)) and P,,% ( * > are Legendre polynomials. From the 

condition of equiiibrium 

2~~r~~~~~~ = P 
0 

it follows that Xs = V2. A fairly complete list of existing forms of real contact surfaces is given in [2]. 
To investigate the thermal regime of the axiahy symmetric body, we have to find the solution of 

the heat conduction equation 

(7’ denotes the temperatures, t is the time, k is the thermal diffusivity of the material of the 
irregularity and Z = z/a) with the boundary conditions 

the regularity conditions 

T-0 as p-+o~, T-+-O as Z+oa (1.6) 

and the initial conditions 

T=Ofor t=O (1.7) 

(h is the thermal ~o~du~~vity of the material of the stat~ona~ body). 
Applying to (1.3) a Hankel integral transformation order zero with respect to p and then a 

Laplace transformation with respect to t and using the conditions (1.5)-( l-7), we obtain 

e-“T (g, 2, t) dt 
0 

f.&,( * ) is a Bessel function]. The tr~sformed conditions (1.4) and (1.6) yield 

l3Y/dZ = --&I (F;)/s for Z = 0, T + 0 as Z -+ QO (1.9) 
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FIG. I. 

The solution of Eq. (1.8) that satisfies (1.9) has the form 

F (E, 2, s) = Acp (&)rs i/g” + a2s,k exp (2 Jfga + a2s/k)l-l (1.10) 

Applying inverse Laplace and Hankel transformations to (1. lo), we get (Fo = a-*kt is the Fourier 
criterion) 

T (~9 298) = A f cp (8 @, (Es 2, Fo) 1, (@) df 

a0 (5, 2, Fo) = -& e-52 erfc 
i ( 

’ 
2jmi 

-sl/Ec)- 

(1.11) 

- t9 erfc 
( ~+E~)] 

The integral on the right-hand side of (1.11) can be estimated numerically using the DQAGS 
procedure of the QUADPACK package [3]. For Fo = 1 and vl = 0.3, the values of the dimension- 
less temperature T* = T/A for a cylindrical irregularity (m = 0; the solid line) and a spherical 
irregularity (m = 1; the dashed line) are shown in Fig. 1. 

2. The non-uniform temperature distribution (1.11) gives rise to thermal stress inside the body. If 
there are no mass forces the elastic displacements induced by the temperature field in an elastic 
body can be determined from the equation 

Here cu, is the coefficient of linear thermal expansion of the material of the axially symmetric body. 
Introducing the thermoelastic potential @,i = z+ , we can write Eq. (2.1) in terms of the dimension- 
less coordinates p and 2 as the following equivalent differential equation: 

V=Q, = fIT, fl = a%t (1 + Vl)/(l - yr) (2.2) 

We can determine the temperature stress from the formulas 

(2.3) 



98 A.A. YEVTUSHENKO andO. M. UKHANSKAYA 

We shall construct a solution of Eq. (2.2f that satisfies the boundary conditions 

% = 0 or ~~~~~ - Va@ = 0 for Z = 0, 0 < p < co 

ora1 = 0 or 8Q/dpi% = 0 for 2 = 0, 0 < p < 00 

% = 0 or SD/d@ = 0 for p = 0, 0 < 2 < 00 

as well as the conditions 

(2.4) 

(2.5) 

(2.6) 

4 =iI@/~?p-tO as p+00, u, ==&?/%-+O as Z-00 (2.71 

The solution of Eq. (2.2) that satisfies (2.41, (2.6) and (2.7), obtained by applying direct and 
inverse first-order f-fankel and Laplace transformations in consecutive order has the form 

0,,(5,Z,Fo)=e_Ee q---&--& erfc ’ 
( ) ( 2m 

-5 1/K)- 

Using (2.81, we can find from (2.3) that 

Here 

(2.91 

C =i AC,, Ci = Z&30 

For 2 = 0, taking (2.10) inta account, we find from the last two relations in (2.9) that 

(2.10) 

- + erf (f 1/i%) - e+“FO -$$- 

(2.11) 

It follows from (2.11) that bounda~ condition (2.5) is not satisfied. Therefore, we shall consider a 
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supplementary problem concerned with distributed forces that act on the surface and induce stresses 
(denoted by the subscript 2) such that 

%a + %l = 0, crrz8 + a,,, = 0 for 2 = 0 (2.12) 

The stress state generated by forces whose distribution over the surface of the elastic half-space is 
axially symmetric can be determined using the Love function [4], which is the solution of the 
biharmoni~ equation 

VPL = 0 (2.13) 

The components of the stress tensor are connected with L by the relations 

The general solution of Eq. (2.13) bounded for P-P CQ and 2-+ CQ has the form 
a 

(2.15) 

Substituting L from (2.15) into the boundary conditions (2.12) and taking the last two formulas in 
(2.14) into account, we get 

Al = (2Vl - I)&-‘-&, A, = -Cu*cp (t&DpJ 

Then we can find from (2.15) that 

L =-Cus~~(S)m,(~,Fo)(~+Z)c3~l,(~)~~ (2.16) 
0 

We can obtain the total thermal stress field as the superposition of the stress fields (2.9) connected 
with the therrnoelastic potential Q, and the stresses brought about by the Love function L, which are 
defined by (2.14). We have 

~,~=cS9s{~~(~,z,Fo)[fI,(~)--E’r,(Sp)]- 

-~~~=~~(~,Fo~[~2~-~2Z)3o~~p)+(2vl-2+fZ)I’o]}d~-C~T 

(2.17) 

To evaluate the integrals in (2.17), we used the same numerical integration procedure [3] as that 
employed to find the temperature 2’ given by (1.11) _ 
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FIG. 2. 

3. We represent the resulting stress field in the irregularity as the sum 

urj = po La,,’ (X, ~1, f) + at]’ (X, ~1, Wl, i3,; = o,;/po (3.1) 

Here ai/ are the isothermal stresses at an arbitrary point X = (x, q, z) of the half-space due to the 
action of normal and shear forces on the boundary of the half-space inside the circular domain (the 
contact surface), 6iif = oiifl( Cpa), aiif are the thermal stresses (2.17), and, on the basis of (2.10), 
C = EIolI-yfl/al[X(l -IQ)]. Using (3.1), we can define the dimensionless Huber-Mises stress 

12 = + {+ [(% - %w)” + Pee - %)$ + @*z - fJJy + &I + & + “z} (3.2) 

The case of an elastic half-space sliding on the surface of a tungsten ball has been investigated in detail. 
(Under high-temperature conditions, deposition of tungsten on a surface improves its friction properties [5].) 
The exact formulas for computing the isothermal stresses a,/ are given in [6]. It is assumed that the stresses 
ozz = -p (r) and u,, = -fp (r) in the half-space caused by the normal and shear forces (p(r) can be found from 
(1.2) with m = 1) are independent and the resulting stress-strain state can be found by taking their 
superposition. If the coefficient of friction is small (compared with unity), than this hypothesis is fully 
applicable [7]. 

Given the values off= 0.1, C and Fo, we can use (3.2) to determine the stress 52 inside the rectangle 
-1.5a~x~l.5a,y = O,O<zCa with step 0.1~ and inside the disc r G 1.5a, z = 0, O”S~=Z 180” with step 14”. 

The maximum values of J2 (J2,8,) on the planes y = 0 and z = 0 are presented in Fig. 2 as functions of C for 
various values of Fo. As can be seen, there exists a local minimum of J2,, , and so, if the values are small, the 
thermal stresses arising in the irregularity due to the heat generated by friction reduce the total stress state 
level. 

Let the strength oY of the material of the ball be a linearly decreasing function of the temperature, 

(Jr/ = uyO - nT (3.3) 

Here cry0 is the isothermal strength of the material and n can be found experimentally or, for example, using the 
Ito-Shishokin formula [8] 

H = HQ-W”+T) (3.4) 

for the hardness (H* is the hardness at 20°C; in the case of tungsten H* = 4.35 GPa). Since (Y = 0.002 for 
metals, it follows that for small temperature gradients, we can find from (3.3) and (3.4) that II = 1.68X lo6 
Pa/degree. According to (1 .l), the temperature inside the ball is equal to 

T = p,C (i - ~,)(&a~)-‘T+ (3.5) 

For tungsten, El = 344 GPa, v1 = 0.3, and a, = 4.4 x 10e6 degree-‘. 
Taking (3.5) into account, we can write (3.3) in the form 

ot,lpo = ay”/pO - 0,77CT* (3.6) 

The relation 

J2 > 3% Y PO I 

which serves as the criterion for Huber-Mises plastic flow and equality (3.6) yield 
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FIG. 3. 

J2* > uu/pO, J2* = 3”*J2 + 0,77CT* (3.7) 

The inequality (3.7) is the temperature-dependent plasticity criterion for tungsten. The material of the 
irregularity begins to flow at some point if the effective stress J2’ at this point exceeds the relative tensile 
(compressive) strength. 

On the surface z = 0 of the ball the inequality (3.7) can be written as 

max 12’ > u,,‘/p, 
.z=o 

The results of computing the left-hand side of (3.8) as a function of C for a number of values of the Fourier 
criterion and f = 0.1 are shown in Fig. 3. The horizontal straight line corresponds to the solution of the 
isothermal problem (Fo = 0). The relation between J2 and C is non-linear, since 52’ depends on C through 
(3.1). In the case of materials for which plastic deformations play the predominant role in the process of wear of 
the contact surface, (3.8) serves as the criterion for the commencement of thermomechanical wear. The 
structure of C involves a constant part, namely, the mechanical and thermophysical properties of the material, 
as well as a variable part depending on the contact conditions y, f and V. Every point in Fig. 3 is determined by 
uyo/po and C. If the point lies above the curve Fo = 0, then there is no thermomechanical wear on the surface of 
the ball (the corresponding region is denoted by a minus sign). But if the point in question lies below the curve 
Fo = 0, then the wear of the surface begins as soon as the contact between the elastic bodies is established (the 
region is denoted by a plus sign). However, if the point lies between the curves Fo = 0 and Fo = m, the 
moment (Fo) when the wear (the flow) begins can be determined from Fig. 3. The domain of conditional wear 
is denoted by minus and plus signs. Thus, in terms of the given parameters cr,“/pO and C, one can construct a 
picture of the plastic wear of the given material. 

We wish to express our gratitude to D. V. Grilitskii, under whose supervision this work was 
carried out. 
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